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Abstract  

A brain machine interface (BMI) for visually guided grasping would provide significant benefits for paralyzed 
patients, given the crucial role these movements play in our everyday life. We have developed a BMI to decode 
grasp shape in real-time in macaque monkeys. Neural activity was evaluated using chronically implanted elec-
trodes in the anterior intraparietal cortex (AIP) and ventral premotor cortex (F5), areas that are known to be in-
volved in the transformation of visual signals into hand grasping instructions. In a first study, we decoded two 
grasp types (power and precision grip) and three grasp orientations (target oriented vertically or tilted left or 
right) from the neural activity during movement planning with an accuracy of about 70%. These results are 
proof-of-concept for a BMI for visually guided grasping that could be extended for larger number of grip types 
and grip orientations, as needed for prosthetic applications in humans. 

1 Introduction 

1.1 Invasive brain-machine interfaces 

Advancements in hardware and computer technology 
have made it possible to record simultaneously from 
many neurons in the brain and to use these signals for 
the control of a neural prosthesis. Such invasive brain-
machine interfaces (BMIs) have been developed by 
several research groups, predominantly for arm reach-
ing [1-4]. Our aim is to develop a similar system for 
the decoding of hand grasping movements (Fig. 1). 
Neural activity is recorded from AIP and F5 of ma-
caque monkeys and interpreted in real time by com-
puter software that makes a prediction of the intended 
hand movement. This is then fed back visually to the 
animal and used as a reward contingency. 
 
1.2 Hand grasping signals in the brain 

Hand movements are extremely versatile and span a 
wide range extending from powerful grips to ex-
tremely delicate and precise tool manipulations. Elec-
trophysiological studies have identified the premotor 
and the parietal cortex as two high-level areas that are 
involved in the preparation of hand movements. These 
areas are distinct from the primary motor cortex that 
encodes low-level movement details like trajectories 
and muscle activity. In the parietal cortex, the group 
of Sakata has described neurons in the anterior in-
traparietal area (AIP) that encode the visual appear-
ance of the object to be grasped or the grasping 
movement itself, and they highlighted the major role 
of this area for the transformation of visual informa-
tion into high-level plans [5]. In the premotor cortex, 

the group of Rizzolatti found similar grasping neurons 
that were specifically active for a particular grasp type 
or hand orientation [6]. They named this area ‘frontal 
area 5’ (F5) after histological examination. Anatomi-
cal tract tracing and reversible inactivation further-
more demonstrated that AIP and F5 are reciprocally 
connected and functionally relevant for hand grasping. 
In previous work, we have explored the coding of grip 
type and grip orientation in AIP and F5 during a de-
layed hand grasping task and could demonstrate the 
usefulness of these signals for the development of a 
BMI for hand grasping [7, 8].  

2 Methods 

2.1 Animal training 

One juvenile macaque monkey (5.5 kg) was trained in 
a delayed grasping task, where it first placed its hands 
at rest and fixated a red LED before a grasping handle 

Fig. 1: Decoding hand grasping signals in AIP 
and F5 for controlling a robotic hand. 
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was presented in one of 5 different orientations. The 
color of an additional LED then instructed the animal 
to grasp the handle either with a power or precision 
grip, respectively. The animal then had to withhold 
movement execution until, after a short delay, the fix-
ation LED dimmed. Correctly executed trials were 
rewarded with a small amount of juice. All procedures 
were in accordance with and approved by the Veteri-
nary Office of the Canton of Zurich. 

2.2 Electrode implantation 

After successful training, 5 floating micro-electrode 
arrays (FMA; MicroProbe Inc, Gaithersburg, MD, 
USA) were implanted in AIP (2) and F5 (3) of the an-
imal. Figure 2 shows a photograph taken during sur-
gical implantation. Each array comprised 16 platinum-
iridium electrodes (length 1.0-4.5mm, spacing 0.5 
mm) and 2 reference electrodes (Fig. 2, inset). This 
configuration facilitated the recording of neuronal ac-
tivity within cortical sulci, where the areas AIP and F5 
are located.  
 
2.3 Signal recording and decoding 

Neural signals were sampled using a Cerebus (Cyber-
kinetics Inc, Foxborough, MA) Neural Signal Proces-
sor (NSP) and streamed to a dedicated decoding PC 
via UDP. Spike sorting was conducted online by ma-
nually setting time-amplitude discrimination win-
dows. Decoding was implemented using maximum 
likelihood estimation. We benchmarked decoder per-
formance offline before commencing BMI experi-
ments by using a spike simulator tool capable of creat-
ing artificial Poisson-distributed spike trains as well as 
loading and replaying previous neuronal recordings. 
Both decoder and simulator were implemented in C++ 
including the Neuroshare library for reading files, the 
Cerebus UDP Network Protocol and a graphical user 
interface.  
In grasp decoding trials, spike data were sampled dur-
ing the planning phase and the planned grasp was de-

coded in real time using Maximum Likelihood Esti-
mation. The decoded grasp was presented to the mon-
key with a still image during the grasp phase. If cor-
rect, the animal received a small juice reward.  

3 Results 

3.1 Electrode stability 

Electrode impedances remained stable during the 
course of almost a full year post-implantation (Fig. 3). 
The mean impedance across 50 weeks (±SD) was 0.64 
MΩ (±0.06) for 43 electrodes implanted in F5 and 
0.66 MΩ (±0.06) for 28 electrodes in AIP. Nine elec-
trodes were non-operational according to the specifi-
cations of the manufacturer and are not included here. 
 
3.2 Neural signals 

From these permanently implanted electrodes, we 
recorded action potentials (spikes) from many indi-
vidual neurons while the monkey performed the 
grasping task. Figure 4 shows the peristimulus time 
histogram of an example neuron that responded much 
more strongly when the animal was planning and ex-
ecuting a power grip than a precision grip movement. 
Other neurons were preferentially active for precision 

Fig. 2: Electrode implantation. Inset: 16 channel 
electrode array. 

Fig. 3: Electrode impedance in the first year  
after implantation.  

Fig. 4: Neural tuning for hand grasping. Exam-
ple cell with spike rasters (on top) and mean fir-
ing rate (at bottom) for power and precision 
grips during the delayed grasping task. 



grip and many cells also encoded the orientation of 
the object to be grasped (not shown). This diversity of 
tuning properties in the neural population allows the 
construction of decoding algorithms for the prediction 
of hand grasping movements in real time.  
 
3.2 Real time decoding 

We then explored the capability to decode the grip 
type and the grip orientation in real-time. For this, we 
first collected spiking activity from AIP and F5 while 
the monkey performed the delayed grasping task, to 
determine the distribution of spike counts for each of 
the possible grasping combinations. Then in prosthetic 
grasping trials, spike data were sampled online during 
the planning phase, and the planned grasp was de-
coded in real time. The decoded grasp was visually 
presented to the monkey during the grasp phase. If 
correct the animal received a small juice reward. In an 
initial experiment, we decoded grasp type (precision 
vs. power) with mean accuracy 94%. Following this, 
we simultaneously decoded grasp type and 2 grasp 
orientations (target tilted to left or right) achieving a 
mean accuracy of 91%. Finally we were able to de-
code 6 conditions (grasp type and 3 orientations, tar-
get tilted left, vertical or tilted right) with mean accu-
racy 72%. Figure 5 shows the decoding performance 
in this task. We found that grasp types were almost 
never confused, while errors in the grasp orientation 
occurred mainly to the neighboring conditions.  

4 Discussion 

Our findings show for the first time a working BMI 
for hand grasping that can distinguish between two 
different grasp types and various grasp orientations. It 
is clear however that further improvements are needed 
before such a BMI could help patients suffering from 
paralysis: for example, increased electrode longevity 
as well as the ability to decode a continuum of grip 
types and movement timing.  

5 Conclusion 

Our results are proof-of-concept that a BMI for vi-
sually guided hand grasping is possible from the high-
order planning signals present in AIP and F5. This 
BMI could be extended for a larger number of grip 
types and orientations, and to include real time state 
decoding, as needed for prosthetic applications.  
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Fig. 5: Confusion matrix indicating the per-
formance to decode the grip type (power and 
precision) and the grasp orientation (target tilted 
left, vertical or right). 




