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Abstract. A Transparent game is a game-theoretic setting that takes
action visibility into account. In each round, depending on the relative tim-
ing of their actions, players have a certain probability to see their part-
ner’s choice before making their own decision. This probability is deter-
mined by the level of transparency. At the two extremes, a game with zero
transparency is equivalent to the classical simultaneous game, and a game
with maximal transparency corresponds to a sequential game. Despite the
prevalence of intermediate transparency in many everyday interactions
such scenarios have not been sufficiently studied. Here we consider a trans-
parent iterated Prisoner’s dilemma (iPD) and use evolutionary simula-
tions to investigate how and why the success of various strategies changes
with the level of transparency.Wedemonstrate that non-zero transparency
greatly reduces the set of successful memory-one strategies compared to
the simultaneous iPD. For low and moderate transparency the classical
“Win - Stay, Lose - Shift” (WSLS) strategy is the only evolutionary success-
ful strategy. For high transparency all strategies are evolutionary unstable
in the sense that they can be easily counteracted, and, finally, for maximal
transparency a novel “Leader-Follower” strategy outperformsWSLS. Our
results provide a partial explanation for the fact that the strategies pro-
posed for the simultaneous iPD are rarely observed in nature, where high
levels of transparency are common.
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1 Introduction

Game theory is widely used to account for strategic decision-making in ratio-
nal agents. Classical game theory assumes that players act either sequentially
or simultaneously. Yet, for social behavior these assumptions are often not ful-
filled since humans and animals rarely act strictly simultaneously or sequentially.
Instead, social agents try to observe their partners and adversaries, and use the
others’ behavior to adjust their own actions accordingly [1,2]. Recently a new
game-theoretic setting of “transparent games” has been introduced, taking into
account action visibility and providing a more realistic model of interactions
under time constraints [3]. In transparent games, each player has a certain prob-
ability to observe the partner’s choice before deciding on its own action. This
probability is determined by the action times of the players. For instance, if
Player 1 always acts well before Player 2, the probability to see the partner’s
choice is zero for Player 1 and one for Player 2 (corresponds to strictly sequen-
tial playing). If both players act approximately at the same time, on average,
they have equal probabilities psee to see each other’s choices. This probability
can range from psee = 0 (players cannot take choices of each other into account;
this case corresponds to the classical simultaneous game) to psee = 0.5 (in every
round typically one of the two players sees the choice of the partner and can
adjust its own decision). The probability that neither player sees the choice of
the partner is equal to 1 − 2psee.

One may expect that action visibility would increase cooperation in non-
zero-sum games, such as the iterated Prisoner’s dilemma (iPD). However, evolu-
tionary simulations in [3] show that this is not necessarily the case. Evolutionary
agents successfully establish cooperation in the iPD for low and moderate trans-
parency by using the classic “Win - stay, lose - shift” (WSLS) strategy [4].
However, for high transparency cooperation drastically decreases (see Fig. 1),
and the most frequent strategy is “Leader-Follower”, which does not rely on
mutual cooperation [3].

This unexpected drop of cooperation in an iPD with high transparency raises
new questions. What explains the success of WSLS for the transparent iPD?Why
does the Leader-Follower strategy become more frequent for high transparency?
Is its success evolutionary stable or is this strategy just transiently success-
ful? To answer these questions, we use evolutionary simulations, since analytic
considerations for the transparent games require solving differential equations
with many variables. Since most results for simultaneous and sequential versions
of the iPD were obtained for strategies taking into account outcomes of only
the last interaction (“memory-one strategies”), we also focus on such strategies.
We show that the rather complex strategy dynamics associated with psee = 0
(simultaneous iPD) [5] is greatly simplified for the transparent settings with
psee > 0. WSLS is the only non-transient strategy for 0 < psee < 0.5.
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Fig. 1. Average fraction of maximal possible payoff (with 95% confidence interval)
achieved by the evolutionary evolved population of players in the transparent iter-
ated Prisoner’s Dilemma. Payoff values are computed over 80 runs for probabilities
psee = 0.0, 0.1, . . . , 0.5 of a player to see the choice of a partner. Maximal payoff corre-
sponds to mutual cooperation. Stable cooperation was established for low and moderate
transparencies, but it was disrupted for psee > 0.3 resulting in a significant decrease of
average payoff.

For psee > 0.35 all memory-one strategies are evolutionary unstable and replace
each other in rapid succession, though WSLS and Leader-Follower are more
stable than the others.

Our results complement the findings in [3] by providing a detailed analysis of
the evolutionarily successful strategies for the transparent iPD. In particular, we
emphasize the superiority of WSLS over other memory-one strategies for most
transparency levels. Yet, the fact that WSLS and other strategies developed
for the simultaneous iPD are unstable for an iPD with high transparency may
partially explain why these classic strategies are rarely observed in nature [6,7],
where high levels of transparency are prevalent [1].

2 Methods

2.1 Transparent Iterated Prisoner’s Dilemma

Prisoner’s dilemma [8] is perhaps the most studied game between two players.
We refer to [9] for a review. The payoff matrix for this game is presented in
Fig. 2. Apparently, the best choice for both players is mutual cooperation, but
defection dominates cooperation (i.e., it yields a higher payoff for each individual
player regardless of the partner’s choice). Thus any self-interested player would
defect (D), although mutual defection results in lowest possible joint payoff. This
“paradox” of Prisoner’s dilemma raises a question: under what conditions is it
rational to cooperate (C)?
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Fig. 2. Payoff matrix for Prisoner’s Dilemma. In this game two players adopt roles of
prisoners suspected of committing a crime. Each can either betray the other (Defect),
or Cooperate with the partner by remaining silent. The maximal charge is five years
in prison, and the payoff matrix represents the number of years deducted from it. For
example, if Player 1 defects and Player 2 cooperates, then Player 1 gets payoff T = 5
and goes free, while Player 2 gets S = 0 and has to spend five years in prison. If both
prisoners defect, each gets a slightly reduced sentence of four years (P = 1) Finally,
with mutual cooperation between the prisoners there is only circumstantial evidence
left, which is sufficient to sentence both prisoners to two years in prison (R = 3).

One possible answer is provided by playing the game repeatedly: in the iPD
cooperation between self-interested players becomes plausible, since they can
take into account past outcomes but also have to consider that they will play
against each other again in future. When experience shows the partner to be
trustworthy, cooperation in repeated game becomes a viable option. Tradition-
ally each round of the iPD is considered to be a simultaneous game [8], where
players make choices independently. In the recently suggested transparent iPD
[3], both players have a certain chance to learn the current choice of the partner.
Three cases are possible:

1. Player 1 sees the choice of Player 2 before making its own choice – with
probability p1see.

2. Player 2 sees the choice of Player 1 before making its own choice – with
probability p2see.

3. Neither of players knows the choice of the partner, probability of this case is
1 − p1see − p2see.

Note that p1see + p2see ≤ 1 meaning that in each round only one of the players
can see the partner’s choice. In the transparent iPD it is natural to assume that
both players act on average at the same time [3]. Indeed, though both players
are interested in the partner’s choice and would wait for the partner’s action,
there is always a time constraint preventing players from waiting indefinitely. If
this time constraint is explicit and known to both players, in most cases they
are motivated to act just before the end of the time allowed for the action, thus
- nearly at the same time. Therefore for the rest of the paper we assume that
p1see = p2see = psee ≤ 0.5 and call psee the transparency level.

As it is usually done for the simultaneous iPD [5], we assume that players
take into account outcomes of the previous game round, that is, use “memory-
one strategies”. Then a strategy of a player in a transparent iPD is represented
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by a vector s = (sk)12k=1, where sk are conditional probabilities to cooperate
in 12 different situations. These depend on whether the player and the partner
cooperated in the previous round, whether the player can see the current choice
of the partner, and what the choice is if it is visible, see Table 1.

Table 1. Representation of strategies in transparent games. Each strategy entry si
specifies probability of a player to cooperate depending on the outcome of previous
round (the first action specifies the choice of the player, and the second the choice of
the partner) and whether current partner’s choice is visible.

Outcome of previous round CC CD DC DD

Current partner’s choice unseen s1 s2 s3 s4

Partner is cooperating (C) s5 s6 s7 s8

Partner is defecting (D) s9 s10 s11 s12

To find out what strategies are optimal depending on the transparency level
psee, we use evolutionary simulations described in the following subsection.

2.2 Evolutionary Dynamics of Memory-One Strategies
in Transparent Games

To study evolutionary dynamics of the transparent iPD, we used the techniques
developed for the simultaneous iPD in [4,5] with minor adaptation to account
for the different strategy representation in transparent games, see also [3].

Consider a population consisting of transparent-iPD players from n “species”
defined by their strategies si = (sik)

12
k=1 for i = 1, 2, . . . , n. That is, any species i

is a group of players sharing the same strategy si, which they use when playing
the iPD with a given transparency level psee ∈ [0.0, 0.5] against any partner. We
assume that the population is infinitely large since a finite number of players
results in complex stochastic effects [10], which we do not consider here. The
population evolves in generations t = 1, 2, . . . . In each generation every player
plays infinitely many rounds of the transparent iPD against a partner assigned
randomly according to the current composition of the population. Species getting
higher average payoff than others reproduce more effectively, and their relative
frequency xi(t) in the population increases in the next generation. Note that
n(t)∑
i=1

xi(t) = 1 for any generation t.

Specifically, the evolutionary success of species i is encoded by its fitness
fi(t), computed as the average payoff for a player from this species when playing
against the current population:

fi(t) =
n(t)∑

j=1

xj(t)Eij ,
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where Eij is the expected payoff of species i playing against species j. If fi(t)

is higher than the average fitness of the population f(t) =
n(t)∑
i=1

xi(t)fi(t), then

xi(t) increases with time, otherwise xi(t) decreases and the species is dying out.
This evolutionary process is formalized by the replicator equation [5]:

xi(t+ 1) = xi(t) +
fi(t) − f(t)

f(t)
xi(t) =

fi(t)
f(t)

xi(t). (1)

It remains to compute the expected payoff Eij for a strategy si = (sik)
12
k=1

against sj = (sjk)
12
k=1. For this, consider Players 1 and 2 from species i and

j, respectively. Since both players use memory-one strategies, their choices in
every round of the game depend only on their mutual choices in the previous
round. This allows to describe the game dynamics by a Markov chain with four
states being the mutual choices of the two players (CC, CD, DC and DD), and
transition matrix given by

M = (1 − 2psee)M0 + pseeM1 + pseeM2, (2)

with matrices M0, M1 and M2 describing the cases when neither player sees the
choice of the partner, Player 1 sees the choice of the partner before making own
choice, and Player 2 sees the choice of the partner, respectively.

M0 =





si1s
j
1 si1(1 − sj1) (1 − si1)s

j
1 (1 − si1)(1 − sj1)

si2s
j
3 si2(1 − sj3) (1 − si2)s

j
3 (1 − si2)(1 − sj3)

si3s
j
2 si3(1 − sj2) (1 − si3)s

j
2 (1 − si3)(1 − sj2)

si4s
j
4 si4(1 − sj4) (1 − si4)s

j
4 (1 − si4)(1 − sj4)



 , (3)

M1 =





si5s
j
1 si9(1 − sj1) (1 − si5)s

j
1 (1 − si9)(1 − sj1)

si6s
j
3 si10(1 − sj3) (1 − si6)s

j
3 (1 − si10)(1 − sj3)

si7s
j
2 si11(1 − sj2) (1 − si7)s

j
2 (1 − si11)(1 − sj2)

si8s
j
4 si12(1 − sj4) (1 − si8)s

j
4 (1 − si12)(1 − sj4)



 , (4)

M2 =





si1s
j
5 si1(1 − sj5) (1 − si1)s

j
9 (1 − si1)(1 − sj9)

si2s
j
7 si2(1 − sj7) (1 − si2)s

j
11 (1 − si2)(1 − sj11)

si3s
j
6 si3(1 − sj6) (1 − si3)s

j
10 (1 − si3)(1 − sj10)

si4s
j
8 si4(1 − sj8) (1 − si4)s

j
12 (1 − si4)(1 − sj12)



 . (5)

Then we can represent the expected payoff by the following formula

Eij = yRR+ ySS + yTT + yPP, (6)

where R,S, T, P are the entries of the payoff matrix (R = 3, S = 0, T = 5, P = 1
for the standard iPD, see Fig. 2), and yR, yS, yT, yP represent the probabilities
of getting to the states associated with the corresponding payoffs by playing si
against sj . This vector is computed as a unique left-hand eigenvector of matrix
M associated with eigenvalue one [5]:

(yR, yS, yT, yP) = (yR, yS, yT, yP)M. (7)
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To guarantee the existence of the eigenvector (yR, yS, yT, yP), strategy entries
for any species i should satisfy the following double inequality

0 < sik < 1. (8)

for all k = 1, 2, . . . , 12. Therefore, it is common to introduce a minimal possible
error ε in the strategies such that ε ≤ sik ≤ 1 − ε. This also allows accounting
for error-proneness of players (so-called “trembling hand” effect [4,11]).

Equation (6) allows to compute the expected payoff Eij for all strategies i, j
in the population. The dynamics of the population is entirely described by the
matrix E. This dynamics is relatively simple for two species, when only four
cases are possible [10]:

– Dominance: one species is unconditionally more fit than the other and replaces
it in the population. Strategy i dominates j when Eii > Eji and Eij > Ejj .

– Bistability: either species can take over the whole population depending on
the initial relative frequencies xi(1), xj(1) and the threshold x∗, given by the
(non-stable) equilibrium frequency of species i

x∗ =
Ejj − Eij

Eii − Eij − Eji + Ejj
. (9)

If xi(1) > x∗, then species i takes over the population, otherwise species j
wins. Bistability occurs when Eii > Eji and Eij < Ejj .

– Coexistence: the population is composed of two species with the asymptotic
frequencies xi = x∗, xj = 1 − x∗, where x∗ is a stable equilibrium given by
(9). This case takes place when Eii < Eji and Eij > Ejj .

– Finally, neutrality takes place when Eii = Eji and Eij = Ejj , meaning that
the frequencies of the species do not change.

We used the analysis of two-strategy dynamics for a pairwise comparison of
strategies. However, already for a population consisting of n = 3 species, the
dynamics can be rather complex, since there are 33 possible types of dynamics
[12]. Analytic considerations for n > 3 are even more complicated [13] and are
usually replaced by evolutionary simulations [5]. Details of our simulations are
provided in Sect. 2.3.

2.3 Evolutionary Simulations

For the evolutionary simulations we adopted methods suggested in [4,5]. We
studied the populations of transparent iPD players for various transparency lev-
els psee, and for each level we ran multiple evolutionary simulations as described
below.

In each run, the population evolved as described in Sect. 2.2, thus the fre-
quencies of species xi(t) changed according to (1). When xi(t) < χ, the species i
was assumed to die out and was removed from the population; its fraction xi(t)
was distributed among the remaining species proportional to their share in the
population. We followed [4,5] in taking χ = 0.001.
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In each run a new species could enter the population with probability 0.01,
thus new species emerged on average every 100 generations. Following [4], prob-
abilities sik for the new species were randomly drawn from the distribution with
U-shaped probability density function (10), favoring probability values around
0 and 1:

ρ(y) = π
(
y(1 − y)

)−1/2 (10)

for y ∈ (0, 1). We required sik ∈ [ε, 1 − ε] with ε = 0.001 as suggested in [4,5]
to satisfy inequality (8). Initial frequencies of the introduced species were set to
1.1χ with χ = 0.001 [4].

The most important strategy entries, especially for low transparency, are
s1, s2, s3, s4 (probability to cooperate when partner’s choice is unknown), since
players use one of them with probability 1 − psee > 0.5. Therefore these entries
converge to optimal values quite fast and their values in evolutionary successful
strategies are most precise, while convergence of other entries to optimal values
may take longer. Since values of s1, s2, s3, s4 for evolutionary successful strategies
were described in [3], here we limited their variability to allow faster convergence
of the remaining entries s5, . . . , s12 to the optimal values. For this we rounded
strategy entries s1, s2, s3, s4 so that they had the values from the set

si1, s
i
2, s

i
3, s

i
4 ∈ {ε, 1

6
,
2
6
,
3
6
,
4
6
,
5
6
, 1 − ε}. (11)

For the iPD with the payoff matrix shown in Fig. 2 commonly discussed strategies
are formed by the values from the set {ε, 1

3 ,
2
3 , 1 − ε} [4,5,14], but in 11 we also

consider intermediate values to achieve better discretization.
We carried out evolutionary simulations with random and with pre-defined

initial compositions of the population. A random initial population consisted of
n(1) = 5 species with equal frequencies x1(1) = . . . = x5(1) = 0.2 and random
strategies. In this case we traced 109 generations in each run. We also considered
three pre-defined initial populations consisting of a single species with one of the
following strategies:

– Win – stay, lose – shift (WSLS): s = (1, 0, 0, 1; 1, 0, 0, 1; 0, 0, 0, 0);
– Generous tit-for-tat (GTFT): s = (1, 1

3 , 1,
1
3 ; 1,

1
3 , 1,

1
3 ; 0, 0, 0, 0);

– Leader-Follower (L-F):

s = (
1
3
, 0, 0, 0;

2
3
, 0, 0, 0; 1, 1, 1,

1
5
) (12)

These strategies were selected as most evolutionary successful in simulations
with random initial population for various transparency levels psee (see Sect. 3
for details). For the pre-defined initial populations we traced 108 generations
in each run since it was not necessary to ensure stabilization of the population
dynamics (which was the case for the random initial population). For each of
the four initial compositions of the population described above, we performed 80
runs for each value of psee = 0.0, 0.1, . . . , 0.5. Additional 80 runs of simulations
were performed for transparency levels psee = 0.26, 0.28, . . . , 0.50, for the initial
WSLS and L-F populations.
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2.4 Measuring the Strategies’ Evolutionary Success

To quantify the evolutionary success of a strategy we computed the average of
its relative frequency xi(t) across all generations t and across all runs. Since
the strategies in the evolutionary simulations were generated randomly, some of
the observed strategies might not entirely converge to the theoretical optimum.
Therefore, we used a coarse-grained description of strategies as suggested in [3]
with the following notation: symbol 0 for sik ≤ 0.1, symbol 1 for sik ≥ 0.9, symbol
* is used as a wildcard character to denote an arbitrary probability. We char-
acterized as Always Defect (AllD) all strategies encoded by (0000; **00; **00),
meaning that the probability to cooperate when not seeing partner’s choice or
after defecting is below 0.1, and other behavior is not specified. Similarly, the
generalized representations of other strategies were as follows

– Win – stay, lose – shift (WSLS): (100c; 1***; ****) with c ≥ 2/3;
– Tit-for-tat (TFT): (1010; 1***; ****);
– Generous tit-for-tat (GTFT): (1a1c; 1***; ****), where 0.1 < a, c < 0.9;
– Generous WSLS (GWSLS): (1abc; 1***; ****), where c ≥ 2/3, a, b < 2/3 and

either a > 0.1 or c > 0.1;
– Firm-but-fair (FbF): (101c; 1***; ****), where 0.1 < c < 0.9;
– Leader-Follower (L-F): (*00c; ****; *11d), where c < 1/3 and d < 2/3.

3 Results

Frequencies of strategies for various initial compositions of the population are
presented in Fig. 3. In all cases, the fraction of the described strategies drops
down for psee > 0.3. This happens due to the fact that for higher transparen-
cies population dynamics often enters a “chaotic” mode, where many transient
strategies replace each other in a rapid succession [3]. Each of these transient
strategies has a low relative frequency, while taken together they constitute a
considerable fraction of the population, especially for high psee.

Regardless of the initial population composition, “Win-stay, lose-shift”
(WSLS) strategy is a clear winner for 0 < psee < 0.4. The theoretically opti-
mal form of this strategy is (1001; 1001; 0000), however in simulations it may
appear as (1001; 1**1; 000*), where the entries marked by the wildcard character
* can take a value from 0 to 1 (see Fig. 5).

For psee ≥ 0.1 WSLS can be only replaced in the population by a strategy
(1001; d***; *00*) with 0 ≤ d < 1 (Fig. 6a–c). In [3] this strategy was called
treacherous WSLS since it behaves like WSLS when not seeing the choice of the
partner, and defects when seeing that partner cooperates. Treacherous WSLS
has low payoff when playing with itself and is easily replaced by other strategies,
but it dominates WSLS for any psee > 0.

The predominance of WSLS as the single frequent non-transient strategy can
be challenged only for psee ≈ 0 (minimal transparency, nearly-simultaneous iPD)
by GTFT and for psee > 0.4 (maximal transparency, nearly-sequential iPD) by
L-F. Below we discuss both these cases in detail.
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Fig. 3. Average relative frequencies of strategies occurred in the population for its
various initial compositions: (a) random; constituted by (b) WSLS, (c) GTFT and (d)
L-F strategies. Other strategies are transient (i.e. persist in the population only for a
relatively short time). Results for all initial populations are quite similar, yet a few
differences are noteworthy. First, the frequencies of WSLS and GTFT depend on the
initial composition of the population for psee = 0, but not for higher transparency.
When one of these strategies was the initial strategy of the population, it is much more
abundant than for the random initial composition. Second, when L-F is the initial
strategy of the population, it is has considerably higher frequency for psee = 0.3 and
psee = 0.5, but not for psee = 0.4. Since for psee = 0.3 L-F has a noticeable frequency
only when forming the initial population, for this transparency L-F can persist but
cannot take over the population when starting with a low frequency (see Fig. 4b). Note
that such non-monotonicity in strategy dynamics is not altogether unexpected, since
the dynamics depends non-linearly on the transparency level [3].

For minimal transparency the WSLS frequency slightly drops (Fig. 3a) since
in this case population of WSLS players can be invaded by AllD. Let s1 = (1 −
ε, ε, ε, 1 − ε; 1 − ε, ε, ε, 1 − ε; ε, ε, ε, ε) (WSLS), s2 = (ε, ε, ε, ε; ε, ε, ε, ε; ε, ε, ε, ε)
(AllD). Estimating matrix of expected payoff by (6), we see that

E11 ≈ 3 − 5ε, E12 ≈ 1 + 7ε
2

+
1 − 7ε

2
psee, E21 ≈ 3 − 3

2
ε − psee, E22 ≈ 1 + 3ε.

Thus for psee ≤ 3.5ε WSLS is dominated by AllD and for psee > 3.5ε the two
strategies are bistable. AllD invades WSLS in the former case unconditionally
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Fig. 4. Number of generations for that initial strategy of the population remains the
most frequent for the initial population constituted by (a) WSLS and (b) L-F players.
The central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted individually
using the ‘+’ symbol. The higher the number of generations, the longer the initial
strategy persists in the population. While persistence of WSLS is relatively stable, L-F
can persist only for psee = 0.3 and psee = 0.5.

and in the latter case if its equilibrium frequency given by (9) is sufficiently
low. Namely, if AllD with initial fraction 1.1χ is introduced to the population
playing WSLS, for psee < 7ε+1.1χ(1−8ε)

2−1.1χ AllD invades the population. In this case,
unconditional defectors can take over the population for a considerable number
of generations, and strategies different from WSLS (TFT and GTFT) should be
introduced to the population to restore cooperation. These strategies can resist
WSLS invasion, therefore once WSLS dies out it may take many generations to
re-establish itself.

In our simulations, ε = 0.001, χ = 0.001, so WSLS can resist AllD-invasion
for psee > 0.0041. In this case WSLS is dominated only by treacherous WSLS.
This weak transient strategy is easily replaced by others, which allows WSLS to
reappear in the population relatively quickly.

The decrease of WSLS frequency for high transparency (Figs. 3 and 7) is
caused by two factors. First, as one can see from Fig. 5, the higher psee the more
precisely WSLS should correspond to its theoretically optimal profile. Indeed,
for psee = 0.1 most entries of WSLS have relatively high standard deviations,
meaning that in this case a successful strategy can follow the WSLS principle in
a rather general fashion. Meanwhile, for psee = 0.5 most entries have low vari-
ability, meaning that successful WSLS variants can have only slight deviations
from the optimal profile. The closer a strategy must be to the theoretical WSLS
profile in order to be successful, the lower the probability that such a strategy
is by chance introduced in the population, which results in lower frequency of
WSLS for higher psee. Note that the frequency of WSLS would decrease even if
we understand WSLS in the most general sense and consider GWSLS as a part
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Fig. 5. Average strategy profiles with standard deviations for the winning strategies
in a transparent iPD: (a) for WSLS at psee = 0.1, (b) psee = 0.3, (c) psee = 0.5 and for
L-F at psee = 0.5 (d). Each strategy profile is represented by 12 entries characterizing
probability of a player to cooperate. Namely, s1, . . . , s4 are probabilities to cooperate
when current partner’s choice is unknown and the outcome of the previous round
was “both cooperated”, “self cooperated, partner defected”, “self defected, partner
cooperated” and “both defected”, respectively. Similarly, s5, . . . , s8 and s9, . . . , s12 are
probabilities of a player to cooperate seeing that current partner’s choice is to cooperate
and to defect, respectively. Standard deviations show the difference in variability for
various entries. For instance in (a) some strategy entries are constant s1, s2, s3, s5, some
vary only slightly s4, s9, s10, s11, and other entries are almost random s6, s7, s8, s12.

of it (Fig. 8). Second, the higher psee is, the faster and easier the treacherous
WSLS takes over the population, since it has higher chances to defect WSLS.
This also means that a strategy that only roughly resembles the treacherous
WSLS profile can be successful against WSLS for high psee (see Fig. 6a–c).

It remains to explain the success of L-F for high transparency. Consider the
effect of psee on the frequencies of WSLS and L-F in more detail. Figure 8 shows
how these frequencies vary for psee ∈ [0.26, 0.50] taken with a step of 0.02. for
the initial population consisting either of WSLS or L-F players. Note that L-F is
only successful for maximal transparency psee = 0.5 (Fig. 8a), although for some
transparency levels psee < 0.5, L-F can remain in the population once introduced
(Fig. 8b).
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Fig. 6. Average strategy profiles with standard deviations for the strategies replacing
initial strategies in simulations with pre-defined initial population: (a)–(c) strategies
replacing WSLS for psee = 0.1, psee = 0.3 and psee = 0.5, respectively; (d)–(f) strategies
replacing L-F for psee = 0.3, psee = 0.4 and psee = 0.5, respectively.

The success of L-F for maximal transparency can be partially explained by
the fact that a variant of this strategy given by Eq. (12) can be replaced in
the population only by other variants of the L-F strategy (Fig. 6d). Although
these variants are not evolutionary stable and are eventually replaced by other
strategies (Fig. 3d), this indicates a good evolutionary potential of L-F for psee =
0.5. One particularly interesting modification of L-F is a strategy with a profile
(1001; 1001; 1111). As it combines the features of L-F and WSLS we term it
“WSLS-like L-F”. This strategy dominates normal L-F and easily replaces it
in the population. But contrary to the normal L-F, WSLS-like L-F is highly
unstable since it is dominated by many strategies including WSLS, treacherous
WSLS and AllD. Therefore, WSLS-like L-F stays in population just for a few
generations and then is replaced by other strategies (similar to the treacherous
WSLS).
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Fig. 7. Dynamics of the most frequent strategy of the population in various runs for
initial WSLS-population. (a) For psee = 0.1 WSLS is predominant in most runs. (b) For
psee = 0.3 WSLS frequency wanes, while other TFT, L-F, FbF and GWSLS become
more abundant. Fraction of various transient strategies also increases and (c) for psee =
0.4 they become most frequent. (d) For psee = 0.5 WSLS rarely reestablishes itself and
the only frequent strategy is L-F. Population mostly is in a chaotic mode with transient
strategies replacing each other.

Fig. 8. Average relative frequencies of WSLS, WSLS with GWSLS, and L-F strategies
for the initial populations constituted by (a) WSLS player and (b) L-F players. Note
that in both cases WSLS frequency decreases considerably for psee > 0.35.
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4 Conclusion

Here we aimed to explain the success of various strategies in the transparent
iterated Prisoner’s dilemma [3]. Our main findings are:

– Win – stay, lose – shift (WSLS) and Generous tit-for-tat (GTFT) are two
predominant strategies for psee ≈ 0. This case of low transparency is very
close to the classical simultaneous Prisoner’s dilemma in which agents make
choices without knowing the respective choice of the other agent.

– For most non-zero transparency levels (0 < psee < 0.5), WSLS is the only
effective memory-one strategy. However, WSLS is not evolutionary stable,
since it can be counteracted by its modified version, termed “treacherous
WSLS”, which defects when seeing the partner’s choice.

– For psee ≈ 0.5 (maximal transparency) a second strategy, Leader-Follower
(L-F), becomes predominant. When two players use this strategy, one of them
defects and the other cooperates, leading to a kind of “turn-taking” behavior.
However, L-F is also not evolutionary stable since it evolves towards highly
unstable WSLS-like variants.

Fig. 9. Strategy dynamics for various values of psee. Solid and dashed arrows indicate
likely and less likely directions of dynamics, respectively. Strategies that can persist in
the population for high number of generations (compared to other strategies) are shown
in bold blue font. We group all strategies that cannot persist in the population and do
not have special importance for the dynamics as “transient”. Four cases of dynamics can
be distinguished. (a) For psee ≈ 0 (for psee < 0.004 in our simulations) the game resem-
bles the classic simultaneous iPD. In this case strategy dynamics is relatively complex
[5]. The population oscillates between two predominant strategies, WSLS and GTFT,
and the transient states are relatively short. (b) As we increase psee, two important
changes take place. First, GTFT becomes ineffective against other strategies, includ-
ing WSLS, L-F and AllC. Second, for psee > 0.004 AllD cannot invade a population of
WSLS players, and the only strategy that can “dethrone” WSLS is treacherous WSLS.
These changes result in greatly simplified dynamics with WSLS being the only non-
transient strategy. It is occasionally invaded by treacherous WSLS, which controls the
population only for a short time and is then replaced by other strategies. (c) For high
transparency (0.35 < psee < 0.5, with threshold value 0.35 selected based on dynamics
of strategy frequencies shown in Fig. 8), WSLS is still predominant, but it becomes
difficult for this strategy to take over the population. Therefore, the population spends
most of the time in a “chaotic” state with various transient strategies quickly replacing
each other. (d) Finally, for maximal transparency (psee ≈ 0.5), L-F becomes the second
predominant strategy. Yet, L-F does not have stable control of the population since
some modifications of L-F can be invaded by non-L-F strategies. As a result, transient
strategies still control the population for most of the time. (Color figure online)
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Figure 9 summarizes our results schematically representing the strategy
dynamics for various transparency levels psee.

Overall our results provide an important extension to previous studies that
have used evolutionary simulations to suggest and test strategies in classic simul-
taneous and sequential games. By concentrating on transparent games frequently
encountered in real life but rarely investigated, we provide a partial explanation
for the fact that the strategies developed for the simultaneous iPD are rarely
observed in nature [6,7], where high levels of transparency are common [1].
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