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Abstract

For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To
determine how monetary consequences influence the neural representations of motor preparation, human brain activity
was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward
context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in
canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in
posterior parietal and premotor cortex peaked in high ‘‘absolute value’’ (high gain or loss) conditions: being highest for
large gains in subjects who believed they performed well while being highest for large losses in those who believed they
performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute
value of that action, predicated upon subjective, rather than objective, estimates of one’s performance.
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Introduction

The selection of one amongst a repertoire of potential

behavioral responses entails the articulation of both an appropriate

goal and the means to achieve that goal. In a natural context,

however, a plan of action rarely guarantees a specific outcome.

Most actions carry with them a certain probability of success

or failure, and these successes and failures engender certain

consequences. Thus to discern an optimal course of action, the

expected consequences of actions—their possible outcomes and

contingencies—must be assessed.

Functional imaging studies in humans have extensively

investigated areas differentially responsive to various aspects of

choice [1–4], anticipation [5–8], and receipt of monetary gains

and losses [9–14]. Predominantly, these inquiries have emphasized

subcortical and prefrontal cortical regions, speculating on their

role in an array of tasks from facilitating appropriate approach or

avoidance behavior to monitoring outcomes in order to adjust

future strategies.

From this wealth of findings, knowledge has been gleaned as to

how rewards associated with stimuli are processed and exploited to

guide behavior. However, these studies shed considerably less light

on whether and how rewards consequent of response execution

mold motor-preparatory activity in the areas engaged in

transforming sensory inputs into preparatory signals preceding

motor events. Most previous experiments have passively presented

cues and outcomes, demanding no instrumental response on the

part of the subjects to obtain rewards [11,15–18]. Even in

paradigms mandating movements—either as tools to maintain

vigilance or signal choice [3,6,7,19–21], or specifically to investi-

gate instrumental action-reward contingencies—the required

responses were comparatively easy, thus not prompting substantial

motor preparation [22–26].

In recent years, macaque electrophysiological experiments have

begun dissecting the influence of reward contingencies on the

process of action selection and preparation. These investigations

have identified reward-related factors that bias neural activity in

motor preparatory frontal and posterior parietal areas, which may

in turn dispose the animal’s selection of which movement to

execute. Firing rates in lateral intraparietal area (LIP), the region

in macaque posterior parietal cortex involved in encoding

oculomotor action plans [27], have been shown to be correlated

with the weight of sensory input indicating which saccade target is

rewarded [28], the log likelihood that a given eye movement will

result in a reward [29], the magnitude and probability of reward

associated with a saccade target [30,31], and the relative

desirability of a saccade with respect to other possible saccade

options [32]. Information about the preference and magnitude of

rewards for reach targets has been decoded from an adjacent

parietal region involved in reaching [33,34], and recordings from

premotor cortex imply that the motivation to choose and acquire a

saccade target may shape neural responses as well [35].

While these investigations proffer insight into reward-modulated

motor preparatory activity, they often employed behavioral tasks
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that were rather undemanding and simple, as in most human

studies examining reward. Conversely, many real-life goal-

directed actions necessitate greater cognitive exertion, demanding

effort at mnemonic, preparatory, and/or execution stages. This

complexity generates uncertainty and variability in behavioral

outcomes. The prediction and evaluation of these potential

behavioral outcomes under difficult task conditions clearly

modulates the neural representations of reward and punishment

[7,36,37] and, moreover, allows optimizing motor responses [38].

Yet little is known about where and how outcome-related

parameters might influence neural activity subserving action

preparation. In addition, the corpus of previous studies on

reward-modulated motor preparatory activity largely assigned

absence of reward rather than explicit punishment as the cost of

failure, impeding distinctions between factors associated with a

given action (but see [35]). Without explicit penalties, variables

such as value, incentive (i.e. aversion to punishment or the

expectation of reward), and internal motivation would likely

change in step. Finally, as simple movements render the likelihood

of success high and the ability to gauge one’s own performance

straightforward, the effects of subjects’ subjective appraisal of

outcomes as opposed to the actual objective probability of outcomes

cannot easily be disentangled. Thus, it is difficult to infer from

previous work how these different outcome-related parameters

impinge upon the neural representations of complex behaviors

required in everyday life.

The goal of this study was to ascertain whether and, if so, how

expected consequences of complex actions, dependent on human

subjects’ performance, modulate activity of neural substrates

engaged in action preparation. Using event-related fMRI, we

investigated effects of expected monetary reward or punishment in

cerebral areas recruited in a challenging spatial delayed-response

task. To impose consequences for success and failure, trials were

associated with variable monetary gain-loss contexts, stipulating at

the beginning of the trial the amount the subject would gain if she/

he performed the task correctly and lose otherwise. Every trial

instructed one correct response, so subjects unequivocally

understood the appropriate action to garner success and maximize

reward. Therefore, unlike most prior studies, sizable uncertainty in

anticipation of reward or punishment stemmed entirely from the

subject’s ability to successfully prepare and implement the pre-

cued motor response.

This study reports that the profile of motor preparatory activity

throughout several task-relevant regions manifested modulation

due to the gain-loss contexts. Specifically, signal time-courses of

regions in posterior parietal and premotor cortex reflected the

action’s absolute value in the delay period preceding the response.

Moreover, these areas revealed a cognitive, framing effect,

responding as dictated by subjective estimates of success rather than

subjects’ objective performance: motor preparatory activity was

more pronounced in higher gain conditions whenever a subject

thought that she/he performs well, whereas preparatory activity

was increased in higher loss conditions whenever a subject thought

that she/he performs poorly.

Results

The principal events of interest in the task included: (1) the

presentation of the gain-loss context cue, followed by the spatial

cues; (2) the delay period interposed between visual cue

presentation and the motor response; (3) the execution of the

motor response; and (4) feedback indicating the gain or loss

acquired in a particular trial, contingent on the correct (gain) or

incorrect (loss) response (Figure 1). By imposing a long delay

between instructive visual cues and the contingent motor response,

this task structure permits delineation between neuronal contri-

butions due to sensory, motor, and intervening preparatory

processes.

To make a response, subjects operated a trackball with their

right index finger to guide a cursor sequentially to five

remembered out of nine possible target locations, in the exact

order in which they were previously cued. Subjects were allowed

a limited time in which to complete their motor responses,

prompting them to prepare movements in advance. Brief cue

presentation, high planning load and constrained response

time made successful trial completion difficult. Therefore,

subjects trained extensively on the task before scanning. This

training helped to minimize learning effects and to stabilize

performance during the experimental session, promoting stable

expectations of action outcomes throughout the task (see

below).

Model Predictions for Different Gain-Loss Contexts
The reward contexts comprised five combinations of potential

gains and losses: $0/2$0, $1/2$1, $1/2$5, $5/2$1, and $5/

2$5. These combinations enabled predictions as to the hypothet-

ical modulation of neural signals due to various parameters of the

expected action outcome for different performance levels. Figure 2

illustrates the models based on three such parameters, and

corresponding predictions for fMRI activity in motor preparatory

areas, averaged over ‘‘good’’ (.50%) and ‘‘bad’’ (,50%)

performances:

(1) First, possible gains and losses may be reflected in the

prospective monetary return or ‘‘value’’ of an action. Value is

calculated as the sum of two products—likelihood of success

(i.e. performance) times gain plus likelihood of failure (i.e.

12performance) times loss:

Value~performance � gainz 1{performanceð Þ � loss

The value model predicts the highest and lowest BOLD-signal

Author Summary

The expected outcome of voluntary actions profoundly
shapes human decision making. For instance, expected
monetary reward and punishment are powerful modula-
tors of human behavior. Yet how these factors influence
brain activity responsible for the preparation of such
behavior is not fully understood. This is especially true for
demanding tasks, in which the outcome—e.g. reward
versus punishment—critically depends on the accuracy of
actions. In our human fMRI study we investigated brain
activity in specific cortical areas that are related to the
planning of voluntary behavior. We show that planning
activity in these areas is strongly influenced by the
expected monetary gain or loss that subjects associated
with their performance in a demanding motor task.
Planning activity was highest for large expected gains in
subjects who believed that they performed well; converse-
ly, activity was highest for large expected losses in subjects
who thought that they performed poorly. This pattern of
planning activity was best described by a model which we
refer to as the ‘‘subjective absolute value model.’’ We
suggest that absolute value signals in motor planning
areas can be used to mobilize motor resources in
behaviorally relevant situations—both to maximize gains
and to avoid losses.

Reward Modulation of Action Preparation
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amplitudes for the ‘‘asymmetric,’’ higher gain ($5/2$1) and

the higher loss condition ($1/2$5), respectively (Figure 2A).

For bad performance BOLD-amplitudes increase from the

$5/2$5 to the $1/2$1 to the $0/2$0 context, while for good

performance this order reverses.

(2) Second, possible gains and losses may be encoded in a manner

that reflects the behavioral import of an action, either through

acquiring a reward or through avoiding a loss. Indeed,

avoiding a loss may in itself be rewarding, and a possibility of

a loss may be as effective for mobilizing action preparation as

a possibility of a prospective gain. Thus, potential gains and

losses could both contribute to the appraisal of the action—

either separately (i) or in combination (ii):

(i) Separate contributions of potential gains and losses are

captured by the ‘‘stakes’’ model (note the absolute value of

the loss term):

Stakes~performance � gainz 1{performanceð Þ � DlossD

Following this model, at any level of performance the greatest

modulation would be observed in the high gain/high loss

context ($5/2$5); the smallest in the no gain/no loss context

($0/2$0) (Figure 2B). The ordering of the remaining

contexts is dictated by performance. Note that on average

(i.e. at 50% performance), the stakes model resembles the risk

associated with an action since the stakes scales with the

variance of the expected outcome.

(ii) Alternatively, a combined contribution of potential gains and

losses to the appraisal of an action is captured by the

‘‘absolute value’’ model. In this model the expected gains and

losses are summed as in the value model. Yet the result,

either positive or negative, would equally translate into the

representation of an action’s import as captured by its

absolute value (note that the term ‘‘absolute’’ here refers to

the mathematical notion of ‘‘modulus’’):

AbsoluteValue~Dperformance�gainz 1{performanceð Þ� lossD

As contrasted to the stakes model, the absolute value model

predicts the highest BOLD-amplitudes for ‘‘asymmetric’’

contexts: in the higher gain condition ($5/2$1) for subjects

performing well, and in the higher loss condition ($1/2$5)

for subjects performing poorly. In other words, the absolute

value model highlights the possibility to obtain a reward in

good performers whereas it stresses the chance to avoid a

punishment in poor performers.

Behavioral Results
The 17 subjects who participated in this study achieved

drastically different levels of performance, ranging from 10% to

70% correct responses (Figure 3A). However, performance levels

across the five gain-loss contexts were indistinguishable (Fried-

man’s ANOVA: X2 (4,64) = 0.82, p = 0.94). To assess if

performance changed throughout the scanning session, trials were

evenly divided into six successive blocks. No significant differences

in success rates across blocks of trials emerged (Friedman’s

ANOVA: X2(2,32) = 0.22, p = 0.89), indicating that no learning

occurred during the course of the fMRI experiment.

Across gain-loss contexts, reaction times were indistinguishable

(Friedmans ANOVA: X2(4,960) = 2.36, p = 0.67). Total move-

ment time to complete responses was shortest for the $5/2$1

condition. Yet this trend did not reach significance (Friedmans

ANOVA: X2(4,960) = 4.68, p = 0.32). From these observations,

individual subjects’ behavioral measures show no significant

disparities across conditions, yielding a relatively fixed probability

of success for each subject during the experimental session.

Subjective Reports
Upon completion of the scanning session, but prior to receiving

any feedback about their overall performance and net winnings, all

Figure 1. Experimental design. After initial baseline fixation, the gain-loss contingencies for the trial were displayed, followed by a brief
presentation of spatial cues specifying the required movements for the trial. After a long delay, subjects performed a speeded motor response, and
received immediate feedback (gain or loss) based on their performance.
doi:10.1371/journal.pbio.1000444.g001
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subjects completed a questionnaire: first, 16 of 17 subjects claimed

to pay attention to the presented gain-loss contexts; all subjects

reported investing maximal effort on all trials, independent of the

gain-loss context, as instructed (see Experimental Procedures).

Based on feedback received at the end of each trial, subjects also

estimated whether they had net won money, net lost money, or

broke even. Given the task structure and the fact that performance

did not differ between conditions, net winning required .50%

performance on trials resulting in earning increments/decrements;

net losing required ,50% performance on these trials. Figure 3A

portrays the relationship between perceived (subjective) task

winnings and subjects’ average (objective) performance across all

trials. The subjective ‘‘good’’ group claimed a net gain based on

their performance during the task (n = 11); the ‘‘bad’’ group

claimed net losses (n = 6). For comparison, subjects denoted by

‘‘x’’ actually net won money (n = 6) during the scanning session,

and those by ‘‘o’’ net lost (n = 11). Note that the objective and

subjective performances were uncorrelated (Behrens-Fisher two-

sampled t-test comparing actual performance of the subjective

good versus subjective bad groups: p = 0.70). Because of this

dichotomy, we will present all further results as a function of both

objective and subjective performance estimates.

Additionally, subjects rated the gain-loss contexts in terms of

their motivation during and their preference for related trials.

Figure 3B depicts the mean preference: on the left, the ratings for

the objective good versus objective bad subjects, and on the right,

subjective good versus subjective bad subjects. Intuitively, these

ratings should parallel the value associated with the gain-loss

contexts. Accordingly, subjects in all groups most preferred the

high-gain/low-loss context ($5/2$1), and least preferred the

converse, low-gain/high-loss context ($1/2$5). Between the

objective good and bad groups, no significant differences existed

Figure 2. Explanatory models. Model predictions and hypothetical BOLD responses in motor-preparatory ROIs encoding value (A), stakes (B), and
absolute value (C). For the purpose of illustration, three-component response profiles (cue peak, sustained delay, and response peak)—typically
observed in motor preparatory regions—are depicted. The delay period is shaded in gray. Examples are given for both good (.50%) and bad
performance (,50%).
doi:10.1371/journal.pbio.1000444.g002
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in the ratings of these and all remaining contexts (two-way mixed-

design ANOVA: context [repeated measure]: F(4,60) = 31.0, p ,

0.05; group: F(1,15) = 0, p = 1.0; group x context: F(4,60) = 0.3,

p = 0.89). A similar picture surfaced for the subjective good and

bad groups (two-way mixed-design ANOVA: context [repeated

measure]: F(4,60) = 32.7, p , 0.05; group: F(1,15) = 0, p = 1.0;

group x context: F(4,60) = 0.60, p = 0.66).

Subjects’ motivation (Figure 3C) displayed a strikingly different

trend: objective good and bad groups showed no dissimilarity in

ratings (two-way mixed-design ANOVA: context [repeated

measure]: F(4,60) = 29.4, p , 0.05; group: F(1,15) = 0, p =

1.0; group x context: F(4,60) = 0.2, p = 0.95). Yet context-

dependant group ratings that were divided on the basis of

subjective performance diverged significantly (two-way mixed-

design ANOVA: context [repeated measure]: F(4,60) = 38.7, p ,

0.05; group: F(1,15) = 0, p = 1.0; group x context: F(4,60) = 3.3,

p ,0.05). Subjective good subjects rated the high-gain contexts

($5/2$1, $5/2$5) equivalently, followed by the low-gain contexts,

indicating their motivation rating solely depended on the gains.

However, the subjectively bad group showed the reverse pattern,

i.e. contexts involving high losses were more motivating than high-

gain contexts, congruent with the notion that they believed

themselves more likely to perform poorly. Also note that the

ANOVA statistics indicate that grouping subjects by subjective as

compared to objective performance—through the interaction of

gain-loss context and performance group—accounts for a greater

proportion of the variance in both preference and motivation

ratings.

Neuroimaging Findings
As this study chiefly concerns modulation of motor prepara-

tory activity, the focus lies primarily upon sustained BOLD

activity during the delay period that precedes the motor

response. FMRI-responses elicited by the cue and the feedback

stimulus are described in the supplemental results and discussion

(Text S1).

Motor Preparatory ROIs
The primary analysis identified ‘‘motor preparatory ROIs’’ as those

clusters that (i) exhibited increased levels of fMRI activity during

the delay period (i.e. the time preceding a motor response),

irrespective of the gain-loss context, and that (ii) have been

previously shown to exhibit specific motor-preparatory activity (see

Materials and Methods for details). By this approach, a group

analysis revealed significant delay period activity in the left

superior parietal lobule (SPL), along the medial bank and fundus

of both the most posterior and most anterior aspects of the

intraparietal sulcus (postIPS, antIPS), the dorsal premotor cortex

(PMd), and the (pre-)supplementary motor area (SMA) (see

Figure 4A and Table S1). While we later discuss that these areas

exhibited delayed activity most likely due to their role in

prospective motor planning, retrospective spatial memory and

attention might have contributed to their activity as well.

Among the motor preparatory ROIs, the left SPL demonstrated

the most robust delay period activity; left SPL BOLD time-courses

averaged across all subjects (6SE), sorted by gain-loss context, are

illustrated in Figure 4B. Expressed in %-signal change relative to

the last 4 s of the initial fixation period, the exemplary time-

courses of this region show four main components: (1) a transient

(high-amplitude) signal increase time-locked to the cue, peaking

approximately 6 s after cue-presentation; (2) a sustained level of

activity during the delay period, but of a smaller magnitude than

the earlier cue-related and the later movement-related peak

amplitudes; (3) a transient (high-amplitude) signal increase time-

locked to the initiation of movement, again peaking approximately

6 s after movement onset; and (4) a smaller transient increase time-

locked to the feedback (receipt of reward/punishment), often

obscured by the decay of the larger, movement-related signal.

To better isolate delay period modulations consequent of gain-

loss contexts (without residual contributions from the cue epoch),

the corresponding beta values are depicted in Figure 4C. As these

beta values are regression coefficients that represent the ‘‘weight’’

of each predictor in order to best fit the observed signal relative to

Figure 3. Subjects’ performance and preferences. (A) Actual (objective) versus self-reported (subjective) performance. ‘‘Subjective good’’
subjects assumed net winning money; ‘‘subjective bad’’ subjects assumed the converse. For comparison, ‘‘x’’s are subjects who actually won money;
‘‘o’’s, subjects who lost money. (B) Subjects’ average preference rankings ([1] low; [5] high) of gain-loss contexts, grouped by objective (left graph)
and subjective (right graph) performance. (C) Subjects’ average motivation rankings for varying gain-loss contexts, grouped by objective (left) and
subjective (right) performance. Error bars reflect the standard error (SE) of the mean.
doi:10.1371/journal.pbio.1000444.g003
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the residual baseline activity, they constitute a normalized estimate

of the signal change due to each predictor—in this figure, the

delay periods under each gain-loss context. Averaged over all

subjects, the preferred high-gain/low-loss (+$5/2$1) context

produced the largest signal. While this tentatively suggests that

the BOLD response may reflect the value associated with the trial

or subjects’ preference rankings, the remaining gain-loss contexts

do not generate levels of activity proportional to either the value

model or subjective preference—most notably, the beta value

associated with the low-gain/high-loss context (+$1/2$5) exceeds

those associated with the low-gain/low-loss and neutral context

(+$1/2$1 and +$0/2$0, respectively). This strongly suggests that

the absolute value associated with successful trial completion may

play an explicative role in shaping delay period responses.

In a next step we tried to elucidate any relationship between

objective and subjective performance levels and context-depen-

dant delay period activity: the ‘‘objective good’’ group yielded no

clear order of delay period beta values, except that the neutral

context would have led to the lowest beta estimate in this and in all

other groupings. The ‘‘objective bad’’ group exhibited a pattern

similar to that of the overall group of subjects, with the high-gain/

low-loss context (+$5/2$1) being highest, and the low-gain/high-

loss context (+$1/2$5) being greater than the low-gain/low-loss

and the neutral contexts (Figure 5A). This grouping on the basis of

objective performance does not explain more of the overall

variance in delay period beta values than when considering gain-

loss contexts alone (two-way mixed-design ANOVA: context

[repeated measure]: F(4,60) = 4.595, p , 0.01; group: F(1,15) =

0.475, p = 0.5; group x context: F(4,60) = 0.54, p = 0.71).

Alternatively, subjects were divided according to their subjective

performance estimate. Delay period beta values (Figure 5B)

disclose a trend for an interaction between gain-loss context and

subjective performance grouping (two-way mixed-design AN-

OVA: context [repeated measure]: F(4,60) = 6.248, p , 0.001;

group: F(1,15) = 0.32, p = 0.56; group x context: F(4,60) =

2.267, p = 0.07). For the ‘‘subjective good’’ group, the beta values

of +$5 contexts exceed those of the +$1 contexts, with the highest

beta associated with the +$5/2$1 context. For the ‘‘subjective

bad’’ group, the 2$5 contexts garner a larger hemodynamic

response than the high-gain/low-loss context (+$5/2$1), which in

turn produces a larger response than the low-gain/low-loss and

the neutral context. Collectively considered, these findings concur

best with the absolute value model for both subjective good and

subjective bad performance (cf. Figure 2C). They do not concur

with the value or stakes model, nor do they with the subjective

rankings about preference and motivation. To demonstrate the

task-dependent modulation of activity throughout the trial,

Figure 5C renders the left SPL BOLD signal time-courses for

both the subjective good and the subjective bad group.

The profile of BOLD activity in other motor preparatory ROIs

echoed that in SPL. Figure 6 portrays the analogous time-courses,

for subjective good and bad subjects, for left postIPS (Figure 6A),

left antIPS (Figure 6B), left PMd (Figure 6C), and SMA

(Figure 6D). Across these posterior parietal and premotor areas,

neural activity developed similarly, likely reflecting a modulation

of BOLD responses by the absolute value tied to task completion

(compare Figure 2C). Amongst these areas, the left postIPS

revealed the most robust context-dependent responses (Figure 6D).

Moreover, supporting our findings for the left SPL, delay period

beta values in neighboring left postIPS reveal a significant

interaction between gain-loss context and subjective performance

grouping (two-way mixed-design ANOVA: context [repeated

measure]: F(4,60) = 9.03, p , 0.001; group: F(1,15) = 0.342,

p = 0.57; group x context: F(4,60) = 2.589, p , 0.05) but not for

objective performance grouping (two-way mixed-design ANOVA:

context [repeated measure]: F(4,60) = 6.597, p , 0.001; group:

F(1,15) = 2.119, p = 0.17; group x context: F(4,60) = 0.503, p =

0.73). This implies that the absolute value model for subjective

performance might account best for posterior parietal planning

activity.

To further corroborate these findings, a series of ROI analyses

was conducted to directly probe context-dependent modulations:

Figure 4. Modulation of delay activity by reward context. (A) Regions exhibiting significant delay period activity, across all gain-loss
conditions (p(FWE) , 0.01, k . 5). (B) Average BOLD signal time-courses for different gain-loss contexts (shaded error bars: 6SE), extracted from left
Superior Parietal Lobule (SPL) of each subject. Vertical lines demarcate delay period onset at 0 s and average movement onset at 15 s; combined
‘‘cues presentation’’ (gain-loss context cue, spatial cue, and mask) lasts 3.7 s prior to the onset of the delay period. (C) Average beta values (6SE) for
the corresponding delay-period regressors, averaged across all subjects.
doi:10.1371/journal.pbio.1000444.g004
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on a single-subject level the beta values for each reward context

were extracted for a given ROI and entered into linear regression

analyses. These analyses revealed individual coefficients of

determination (R2-values) for several explanatory models that

could account for the modulation of the delay-related beta

estimates in a given ROI due to the gain-loss contexts. Separate

models were calculated for modulations according to the value, the

stakes, the absolute value, and the subjective motivation model.

Since the earlier three models also incorporate estimates of

performance, we calculated both ‘‘objective performance’’ and

‘‘subjective performance’’ models. For the ‘‘objective perfor-

mance’’ models, these hypothesized modulations for each subject

were determined by their objective performance and for

‘‘subjective performance’’ models, by their subjective performance

estimate (see Experimental Procedures, Table 1 for values used for

these hypothesized modulations). For all ROIs, subjects’ beta

estimates were best explained by the absolute value model which

was based on subjective performance. This is evident from the

average R2-values in Figure 7: in each ROI the respective R2-

value for the subjective absolute value model was the highest. In

other words, this model was the best to account for the variance of

motor-preparatory activity due to our reward-context. For

instance, it explained more than 50% of the variance in the left

SPL and in the postIPS of both hemispheres. Conversely, the least

amount of variance was captured by the objective value model.

Finally, for all ROIs and for all performance-based models, those

based on subjective performance estimates always explained more

variance than their objective counterpart, i.e. the same model but

based on objective-performance estimates.

Figure 5. SPL activity correlates best with subjective absolute
value. Left SPL delay period beta values for (A) objective good versus
bad and (B) subjective good versus bad subjects. (C) Corresponding
BOLD time-courses for subjective good (left) and bad (right) subjects
(figure conventions as in Figure 4). (D) The chart depicts the average R2-
values of the linear regression between the different explanatory
models and individual subject’s beta estimates in the left SPL for
different reward contexts. Significant differences in R2-values of
different models are indicated by ‘‘X.’’
doi:10.1371/journal.pbio.1000444.g005

Figure 6. Reward modulation in motor preparatory ROIs
depends on subjective performance estimates. BOLD time-
courses for subjective good (left) and subjective bad subjects (right)
are shown for motor preparatory ROIs: (A) Precuneus, (B) IPS, near its
junction with POS, (C) PMd, and (D) SMA (figure conventions as in
Figure 4).
doi:10.1371/journal.pbio.1000444.g006
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In order to allow a statistical comparison between models, we

performed a one-way repeated-measures ANOVA for each ROI,

which was calculated across subjects’ R2-values for the different

models. In case of a significant influence of the factor ‘‘model,’’

additional pair-wise comparisons between models were performed

(see Materials and Methods for details). A significant influence of

the factor ‘‘model’’ was revealed for SPL (F(6,96) = 2.7, p , 0.05),

postIPS (left: F(6,96) = 3.0, p,0.05; right: F(6,96) = 2.41, p ,

0.05), and the SMA (F(6,96) = 2.6, p , 0.05). For the left SPL the

results of the post-hoc comparisons between the different models

are shown in Figure 5D. The figure reveals (i) that in the left SPL

the subjective absolute value model explains significantly more

variance than all other models but the subjective stakes model and

(ii) that the objective expected value model performs significantly

worse than all other models. The same principal pattern of results

also surfaced for the postIPS in both hemispheres, except that the

subjective absolute value model was not significantly better than

the subjective motivation model (compare Table S2). All other

ROIs display similar trends, though in these regions only a small

subset of models could be statistically distinguished, if at all (i.e. for

the SMA) (compare Figure 7 and Table S2).

Finally, we conducted a second set of full-brain group analyses

to directly probe brain regions that exhibit context-dependent

modulation. General linear models (GLMs) were defined for each

individual subject that employed a single regressor for each task

epoch. For the cue, delay, and response epochs, an additional

regressor captured the hypothesized parametric modulation of the

fMRI signal due to gain-loss contexts. Separate models were

calculated for the value model, the stakes model, and the absolute

value model (based both on subjective and objective performance

estimates; see Table 1) as well as for subjects’ preference and

motivation. On the second level, group analyses exclusively

utilized contrast images from individual subjects which assessed

the beta values of each parametric regressor capturing the

respective modulation of delay-related BOLD signals in accor-

dance with each of our explanatory models. By this approach, all

voxels in which a particular model could significantly account for

delay period activity were mapped. Furthermore, we were able to

directly contrast our main models using multiple pair-wise

comparisons.

For second-level GLMs predicated upon stakes and value (either

rooted in objective or subjective performance estimates) or

predicated upon subjective preference and motivation, this contrast

produced no significant voxels (up to an uncorrected voxel level

threshold of p,0.05). However, confirming the results of our

previous ROI analyses, absolute value models based on subjective

performance yielded significant clusters in parietal and premotor

cortex (p,0.05 corrected at cluster-level; k . 5 voxels; threshold at

the voxel-level: p,0.05 FDR-corrected), rendered in green in

Figure 8A (also compare Tables S1 and S3). Models of absolute

value based on objective performance also highlighted a subset of

these clusters, but these voxels did not survive the statistical

threshold criteria. Superimposed on the statistical map for

subjective absolute value in Figure 8A are the motor preparatory

ROIs, which exhibited a significant main effect of the delay period

(red). The extensive overlap suggests that these major motor

preparatory ROIs were also the regions most significantly encoding

subjective absolute value-related information.

To further assess the ability of one model to better account for

the observed patterns of BOLD activation, paired t-test compar-

isons between our six main models (Figure 2) were performed for

all possible model combinations. For example, in order to

compare objective value and subjective value models, the two

contrast images corresponding to the parametric modulation for

the two models were extracted from each subject (first-level GLMs)

and considered as pairs in the paired t-test comparison (resulting in

17 pairs for 17 subjects for each paired t-test). In this analysis, only

the subjective absolute value model, when compared to other

models, yielded significant activation: the contrasts of subjective

absolute value . objective absolute value (Figure 8B), subjective

absolute value . subjective stakes (Figure 8C), subjective absolute

value . objective stakes (Figure 8D), and subjective absolute value .

objective value (Figure 8E,F) all exhibited significant voxels within

right and left SPL (p(FDR) , 0.05, inclusive mask for delay period

activity at p(FWE) , 0.01; k . 5 voxels [Figure 8A]; also compare

Table S4). No suprathreshold clusters for any other comparisons,

including the inverse contrasts (e.g. objective value . subjective

absolute value), were revealed.

Discussion

To determine which aspects of an action’s reward contingencies

pertain to action preparation, human subjects were scanned while

performing a difficult motor planning task with monetary

consequences, contingent on task performance. Importantly, task

demands were of sufficient complexity to generate a range of

performance levels and robustly recruit motor preparatory areas,

leading to several novel findings. We found that each subject

performed at a consistent success level throughout the experiment.

Yet performance across subjects differed significantly and—more

interestingly—their subjectively perceived performance was not

correlated with their actual performance. Moreover, subjective

performance estimates better accounted for subjects’ attitudes

towards the gain-loss contingencies. Furthermore, our findings

show differences in BOLD activity which are related to these gain-

loss contingencies. As there was no evidence of any differences in

Table 1. Rank assignment of gain-loss contexts for parametric modulation.

Gain-Loss Context Value Absolute Value Stakes Risk Gains Losses

Performance Good Bad Good Bad Good Bad

+$5/2$1 5 5 5 3 4 3 3 3 2

+$5/2$5 4 2 4 4 5 5 4 3 3

+$1/2$5 1 1 3 5 3 4 3 2 3

+$1/2$1 3 3 2 2 2 2 2 2 2

+$0/2$0 2 4 1 1 1 1 1 1 1

These ranks were mean-corrected and then convolved with the canonical hemodynamic response function. Group random effects analyses disclosed voxels whose BOLD
activation during the cue, delay, and response epochs significantly correlated with these parametric modulators, independent of a main effect for the respective task epoch.
doi:10.1371/journal.pbio.1000444.t001
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behavioral responses between conditions, this BOLD modulation

most likely reflected the subjects’ evaluation of the predicted

monetary consequences of their upcoming actions. Specifically,

our imaging findings demonstrated that posterior parietal and

premotor cortex assimilated the absolute value of a motor plan

during the delay period. This absolute value was not predicated

upon subjects’ actual performance levels, but rather upon their

subjective performance estimates.

Figure 7. Subjective absolute value coding in motor preparatory ROIs. For each ROI the average R2-values of the linear regression between
the different explanatory models and individual subject’s beta estimates for different reward contexts are depicted.
doi:10.1371/journal.pbio.1000444.g007
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Involvement of Canonical Reward Structures in Encoding
Reward Context

Areas in striatum and orbitofrontal cortex exhibited significant

responses to the cue and outcome epochs of the task but showed

no sustained delay period activity. Prior imaging studies

investigating these regions did not generally employ delay periods

long enough to unambiguously disentangle neural signals

generated in these different task epochs. In contrast, here the

profile of orbitofrontal and striatal BOLD activity did correspond

to the time-resolved character of single-unit investigations [39–42]:

regions in the striatum and orbitofrontal cortex revealed similar

reward-contingent modulation. Namely, in most regions the cue

response amplitude reflected the objective value predicted by the

context cue (supplemental results in Text S1, Table S5 and Figure

S1; also compare Figure S2). Moreover, both the striatum and

orbitofrontal cortex differentiated between rewarding and punish-

ing outcomes and their relative size (Table S6 and Figure S3),

consonant with their purported role in utilizing feedback in the

control of motivated behavior [9,10]. In summary, these findings

contribute to the idea that orbitofrontal and striatal areas may

process information highly relevant for guiding goal-directed

action but do not necessarily participate in planning and preparing

movements per se.

Role of Motor Preparatory Regions in Encoding Action
Outcomes

In the current investigation, we identified ROIs with sustained

BOLD-activity in the delay period as the putative neural substrates

of motor preparation. Our approach mimicked the design of a

related study, which demonstrated that the delay-activity in

corresponding regions can be distinguished from activity related to

both preceding visual events and subsequent motor responses.

Moreover, in the same study we were able to demonstrate that

BOLD-activity in the respective ROIs could not be explicated

solely by concurrent processes such as visuospatial attention or

working memory. These regions—in particular the left SPL—

showed greatest activity in conditions requiring that spatial cues be

encoded with respect to a motor plan [43]. Here we asked whether

the same regions would also display a modulation of delay period

activity due to gain-loss consequences.

Our results revealed that, throughout the motor-preparatory

areas, BOLD signal amplitudes for trials in which actions could

either endow high gains or high losses surpassed those in more

neutral trials. Moreover, the high-gain/low-loss (highest valued)

context elicited the most activity in subjects who believed

themselves more likely to succeed, whereas the low-gain/high-

loss (lowest valued) context produced the greatest BOLD response

in subjects who believed themselves more likely to fail. Across

Figure 8. Subjective absolute value coding in Posterior Parietal
Cortex. (A) Voxels revealing a significant main effect of the delay
period are shown in red (p(FWE) , 0.01, k . 5); voxels revealing a
significant parametric modulation of absolute value, based on
subjective performance, are depicted in green (p(FDR) , 0.05, k . 5).

Circled clusters of overlap (depicted in yellow) are significant at p ,
0.05 (corrected at cluster level). (B–F) Cortical sites that exhibited
significant differences when comparing between our six main models
on the second level (p(FDR) , 0.05, k . 5; inclusive mask for delay
period activity at p(FWE) , 0.01; k . 5 voxels [mask shown in red in A]).
Note that the pairwise comparisons between models often suffered
from the high degree of correlation between models in a subset of our
subjects. Thus, the distinction between the models improved markedly
by focusing on those subjects in whom the predictions of both models
under comparison differed maximally. This principle is exemplified in
(F): the comparison of subjective absolute value versus objective value,
in which all subjects are included except those with both good
subjective and good objective performance estimates, i.e. excluding
those subjects in whom the predictions of both models converge (cf.
Figure 2).
doi:10.1371/journal.pbio.1000444.g008
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ROIs this BOLD activity pattern was always best explained by the

subjective absolute value model and worst by the objective value

model.

Action Planning in Posterior Parietal Cortex
Clusters throughout SPL exhibited the most robust delay period

activity, consistent with our previous work, and also best

exemplified context-dependent modulation of this activity. These

clusters closely correspond to areas in PPC localized as a putative

human analog of the macaque parietal reach region (PRR)

[Glidden, H.K., Rizzuto, D.S. and Andersen, R.A., 2009, in

revision]. Interestingly, recordings in the macaque have shown

that, before the monkey performs a reach, PRR demonstrates

activity related to expected value of the outcome [33]. These

findings speak to a general role of PPC in encoding expected

outcomes of actions as a facet of action plans. Accordingly, a

plethora of monkey electrophysiology studies have examined how

expected reward influences neural activity in PPC, with a

particular focus on visuo-oculomotor behavior. Firing rates in

LIP, the region of PCC thought particularly devoted to the

representation of eye movements [27], reflect behaviorally relevant

information in saccadic paradigms probing target detection,

expected value, relative utility, and internal choices [30,44,45].

In demonstrating and characterizing outcome-related modulation

in human PPC, our data augment these previous findings, and

significantly extend their interpretation by considering PPC

responses to both penalties and rewards, as well as their

dependency on objective and subjective performance estimates.

Premotor Cortex Activity in Delayed-Response Tasks
Another region traditionally implicated in various aspects of

action planning and preparation is the PMd. In the macaque

premotor area, the question of value versus motivation encoding

has been investigated through single-cell recordings [35]. In this

decision-making study, monkeys made saccades to indicate their

choice between targets yielding either a punishment (a time-out) or

a fluid reward. Neurons in premotor cortex fired robustly in

anticipation of both large rewards and punishments, a finding

deemed reflective of ‘‘motivation.’’ The predictions of motivation

as put forth by those authors would coincide with those of absolute

value and stakes/risk as defined in our experimental framework.

Given this correspondence, human dorsal premotor areas (PMd,

SMA) manifested the same trend.

The Influence of Subjective Biases on Motor Preparatory
Activity

An added dimension in the exposition of motor preparatory

activity stems from the impact exerted by the subjects’ perceived

performance. Since we did not expect a major impact of this factor,

the collected self-estimate of subjects’ perceived performance

(‘‘good’’ versus ‘‘bad’’) was rather rudimentary. Nevertheless, we

were able to demonstrate a significant explanatory influence of

these subjective performance estimates on the preparatory BOLD

activity. Specifically, in this study, the subjects’ ‘‘conception of acts,

outcomes and contingencies’’ [46] deviated from the objective

likelihood of outcomes. The perceived (subjective) performance was

of even greater importance than the actual (objective) performance

in explicating both subjective attitudes and neural data, attesting to

a strong framing effect. That attitudes and beliefs about the

likelihood of outcomes affect behavior or decision-making is not

surprising. Psychologists have long posited that humans exploit

certain heuristics or simplifying beliefs under conditions when

available information is incomplete or overly complex [47].

However, in our experimental scenario, variability in outcomes

stems from subjects’ abilities and all information necessary to track

performance is provided. Nonetheless, our results suggest that

motor-preparatory regions seem more susceptible to subjective

beliefs than to objective performance.

Possible Limitations
One limitation of our study stems from the equivocal

interpretation of the BOLD signal as a marker for neuronal

activity: positive BOLD responses may derive from neuronal

excitation, neuronal inhibition, or other factors. Thus, actual

neuronal activity could conceivably resemble a (signed) value

model (with stronger excitation for higher gains and stronger

suppression for larger punishments), whereas the BOLD signal

would reflect an absolute value model, with larger responses for

both stronger excitation and inhibition. Such a contention broadly

constrains all fMRI studies considering BOLD activation as a

function of incentive salience. Two lines of reasoning, however,

controvert the aforementioned interpretation: First, given the

design of the present study, the task demands render a major

contribution of neuronal inhibition to the delay-related BOLD

signals less likely—specifically, an accurate movement was

identically requisite both to achieve gains and to avoid punish-

ments. Thus our subjects were strongly motivated to prepare (but

not to inhibit) a movement whenever the possibility of either a

large gain or a large loss existed—mirroring the absolute value

model. Second, the delay-related BOLD signals clearly resemble

electrophysiological findings in monkey PMd [35], which also

showed excitatory preparatory activity related to subjects’ moti-

vation and thus consonant with the absolute value rather than the

value model (see above). Of course, additional electrophysiological

evidence is needed to indisputably substantiate the notion of an

absolute value coding in PPC. Furthermore, additional experi-

ments are needed to allow a more clear-cut separation between the

subjective absolute value model and alternative models: it could

not be statistically distinguished from the subjective stakes model

in any of our ROIs. Similarly, the second-level model comparison

revealed significant differences between the subjective absolute

value model and all other models but the subjective value model.

Successful statistical distinction was particularly difficult because

our models were highly correlated (cf. Figure 2; Figure 8E,F) and

some even converged in subsets of subjects: in those subjects with

the same objective and subjective performance estimates (N = 8),

subjective and objective model variants would yield the same

predictions. Nevertheless, the fact that the subjective absolute

value model always explained a higher amount of variance in all

ROIs under investigation clearly underlines the import of this

model.

Another limitation refers to the separation of the various

cognitive processes that potentially underlie the delay-related

BOLD activity. While we have concurrently provided evidence for

a major role of our ROIs in motor planning (see above), action

preparation within the current paradigm also required attention

and spatial working memory—processes which might contribute

to delay-related BOLD activity as well [48–50]. Thus, this study

ultimately cannot disambiguate the preparatory processes that are

modulated by the reward context. Yet this modulation of

preparatory activity is still in accordance with the formulation of

a specifically defined quantity, namely subjective absolute value.

Implications for Response Selection
Collectively taken, lesion, electrophysiology, and imaging

studies highlight the function of PPC in assimilating relevant,

non-sensory information with sensory- and movement-specific

Reward Modulation of Action Preparation

PLoS Biology | www.plosbiology.org 11 August 2010 | Volume 8 | Issue 8 | e1000444



representations, asserting its role in decision making related to

action. Moreover, recent studies advocate PPC’s capacity to

simultaneously encode competing motor plans [51], while

incorporating signed value information into these alternative

action representations [30–32,52,53]. Thus PPC seems well

situated to render decisions between behavioral alternatives. Yet

the apparent encoding of subjective absolute value instead of

objective value in our task suggests that PPC represents behavioral

plans that flexibly integrate the different types of information

provided by other decision-related areas (e.g. signed value

information represented in the striatum and orbitofrontal cortex

or absolute value information; cf. [7]) in a context-specific manner.

In the context of our task (when only a single but rather

demanding response was required), the observed modulation of

PPC by subjective absolute value might facilitate behavior by

mobilizing resources for those prospective actions that are most

optimal—either for pursuing gains or for avoiding losses. Thereby,

expectations about behavioral outcomes, derived from generaliza-

tions of precedent predictive relationships, were especially relevant

for investing in a current course of action. Subjective cognitive

biases can distort these expectations or generalizations; if they also

distort activity in those regions encoding action representations,

they contribute to motor preparation and, presumably, to response

selection. In this manner, the observed import of subjective

performance estimates, which here were not correlated with

objective performance measures, may form one of the ways in

which people seem to deviate from rationality in their goal-

directed behaviors [54,55], taking actions that appear contrary to

logic or self-interest.

Materials and Methods

Subjects
Seventeen subjects (7 males, 10 females), ranging from 17–27

years old, participated in the experiment. All subjects were right-

handed and exhibited normal or corrected-to-normal visual

acuity. Subjects received a $15 recompense for completing all

training and scanning, in addition to their earnings during the

experiment.

Ethics Statement
Participants provided informed consent in accordance with the

Caltech Institutional Review Board guidelines.

Experimental Setup and Behavioral Control
All visual stimuli were back-projected onto a translucent screen

(22 deg616 deg visual angle) by using a video projector (8006600

pixels, 60 Hz). Subjects viewed the visual stimuli via a mirror that

was mounted on the head coil of the MRI scanner (viewing

distance 1,150 mm). Stimuli were generated on a windows PC

using ‘‘Cogent Graphics’’ developed by John Romaya at the LON

at the Wellcome Department of Imaging Neuroscience. Subjects

positioned a fiber optic trackball (Current Designs, Pennsylvania)

upon their torso, holding the device in place with their right hand

and adjusting the exact placement for comfort. All subjects used

their right index finger to make ‘‘finger reaches,’’ manipulating the

trackball to move the cursor on the screen. These trackball

movements were recorded and analyzed online in MATLAB.

The experimental task required subjects to dissociate arm and

eye movements, demanding central visual fixation throughout

each trial (subjects were allowed to make eye movements during

the intertrial interval). A miniature infrared eye camera (60 Hz

sampling rate; Resonance Technologies, California) placed inside

the headcoil monitored eye movements during all scanning

sessions. Recorded eye behavior (ViewPoint, Arrington Research,

Arizona) was then analyzed offline in MATLAB.

Experimental Task
Figure 1 depicts the task structure and timing. Each trial began

with an initial fixation period (15 s on average, randomly jittered

between 14 and 16 s). The gain and loss context for the current

trial was then presented above and below the fixation point,

respectively, for 1.5 s. Next, the spatial cues, 9 squares, radially

equidistant from the fixation spot, were presented (1.2 s). To

prevent subjects from memorizing a set number of locations, two

configurations of squares, rotated 20 degrees with respect to one

another, were randomly interleaved across trials. Of these 9

squares, 5 were ‘‘hollow’’ (containing an inner black square),

denoting them as targets for the upcoming finger reaches. In

addition, these 5 square targets varied in size, specifying the order

(from smallest to largest) in which the subjects should move

towards them. A visual mask (80 randomly placed white squares)

displayed for 1 s erased any iconic visual memory of the targets.

The ensuing delay period, during which subjects were reminded of

the gains and losses for the trial, lasted 15 s on average, again

jittered between 14 s and 16 s, complementary to the baseline

fixation duration, to ensure all trials were of equal length.

Ultimately, the response screen appeared, serving as the ‘‘go’’

signal, with 9 identical squares in the same locations as the squares

during presentation of the spatial cues. A circular cursor was also

shown, centered on the fixation point. At this time, subjects moved

the cursor in a center-out fashion (from center to target, back to

center, to next target, etc.) sequentially to the 5 targets, in the

order previously instructed. Subjects were allowed 10 s in which to

complete the task. Finally, subjects received feedback: the gain

amount if they successfully acquired all targets; the loss amount

otherwise.

This experiment utilized five gain-loss contexts: +$0/2$0, +$1/

2$1, +$1/2$5, +$5/2$1, and +$5/2$5. Each gain-loss context

trial type occurred 6 times per run, producing a total of 30 trials

per run; the order of trial types was pseudorandomized and

counterbalanced. Subjects trained extensively, performing 5

practice runs outside the scanner and 1 practice run within the

scanner. They then completed 2 runs during scanning. To

promote constant performance throughout the task, subjects were

additionally instructed to ‘‘do their best’’ on all trials, irrespective

of the gain-loss context. Given this instruction and exhaustive

practice, individual subjects’ performance on the task during

scanning remained stable (see Results). Each subject’s mean

performance is therefore taken as her/his fixed probability of

success.

Immediately after the scanning session and before ascertaining

any information about their actual performance or net winnings,

subjects answered a questionnaire: (1) whether they paid attention

to the gain-loss contexts and (2) whether they had performed well

on the task, and net made money; performed poorly, and net lost

money; or roughly broke even (,50% performance; note that this

option was never chosen). They also ranked the 5 gain-loss

contexts with respect to preference (under which context trial types

they preferred working, from most [5] to least [1]) and motivation

(under which context trial types they wanted to perform well, from

most [5] to least [1]).

Functional and Anatomical Imaging
Echo-planar functional images were acquired in a Siemens 3-

Tesla Trio scanner at Caltech’s Brain Imaging Center, using an 8-

channel head coil. The scan volume provided full coverage of

cortical and subcortical structures in 32 axial slices, except that it
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did not cover the cerebellum in its entirety (slice thickness =

3.5 mm, gap = 0 mm, in-plane voxel size = 363 mm, TR =

2,000 ms, TE = 30 ms, flip angle = 90u, FOV = 1926192,

resolution = 64664). Subjects completed 2 runs, each 1,487 s in

duration. Anatomical images were acquired using a T1-weighted

MP-RAGE sequence with the same head coil used for functional

image collection. The whole brain volume was scanned in 176

slices (slice thickness = 1 mm, gap = 0 mm, in-plane voxel

size = 161 mm, TR = 1,500 ms, TE = 3.05 ms, FOV = 2566
256, resolution = 2566256).

Data Preprocessing and Analysis
Functional data preprocessing, conducted through SPM5

(Wellcome Department of Imaging Neuroscience, Institute of

Neurology, London, UK), included slice scan time correction, 3D

motion correction, and linear trend removal. Mean EPI images

were coregistered to whole-brain high resolution T1-weighted

structural images (16161 mm) acquired for all subjects. Anatom-

ical images were spatially normalized to a standard T1 template;

the same normalization parameters were then applied to all

functional images. All EPIs received additional intensity normal-

ization, spatial smoothing (7 mm Gaussian kernel), and temporal

high pass filtering (0.0078 Hz).

After data preprocessing, two types of across-subjects analyses

were performed: (1) an ‘‘ROI-based’’ approach, delimiting brain

regions of interest for each epoch of the task, allowing

characterization of BOLD modulation due to gain-loss contexts

in those regions, and (2) a ‘‘whole-brain’’ approach, exposing all

regions that displayed a predicted modulation due to gain-loss

contexts.

(1) The ROI-based approach defined motor preparatory areas

on the basis of the linear combination of all delay period

covariates, i.e. under all gain-loss contexts. Areas involved in cue

processing were delineated accordingly (significant positive beta

value for all cue predictors). The within-subject ‘‘ROI’’ localizer

utilized a GLM (Friston et al. 1995) incorporating 21 total

predictors of interest: the cue period for each gain-loss context (5

cue predictors), delay period for each gain-loss context (5 delay

predictors), response period for each gain-loss context (5 response

predictors), and outcome period for each magnitude of reward or

punishment (5 outcome predictors: +$5, 2$5, +$1, 2$1, $0).

These boxcar predictors were convolved with the SPM 5

canonical hemodynamic response function. Statistical detection

of BOLD activation related to different task epochs (cue, delay,

and response) was based on a across-subjects, random effects

model with a statistical threshold at p(FWE-corrected) ,0.01 (k . 5).

In order to determine the relevant regions of interest (ROIs) that

exhibit motor preparatory BOLD-activity in the delay period, we

only selected regions that (i) were also significant on the clusters

level (p,0.05, corrected) and that (ii) have been shown to exhibit

motor preparatory activity in an earlier study of comparable

design [43]. A full list of those areas that survived criterion (i) is

provided in Table S1. Those areas of the table that were

previously characterized as brain regions contributing to motor

preparation (criterion (ii)) are in italics. Our method thus

conservatively highlighted regions manifesting a consistent devi-

ation from baseline during the delay period without biases

imposed by any predetermined hypothesis as to the modulation

expected during this task epoch.

In a next step, in each individual and for each of these

functionally defined ROIs the mean beta weights of the various

delay-period regressors and the BOLD signal time-courses were

extracted for a 3 mm radius sphere around the voxel exhibiting a

local maximum t-value for the main delay-activity contrast (both

normalized to %-signal change). In addition, we used the

individual beta values to perform a series of linear regression

analyses. For each ROI and for each subject we calculated

coefficients of determination (R2-values) for several explanatory

models that could account for the modulation of the delay-related

beta estimates in a given ROI due to the gain-loss contexts,

namely the objective value, subjective value, objective stakes,

subjective stakes, objective absolute value, subjective absolute

value, and motivation model. In order to compare our explanatory

models, we first normalized subjects’ R2-values in order to

eliminate any between-subjects variance in our within-subject

design. Specifically, normalization was based on the deviation

between a subject’s (i) overall mean (Mi), computed across that

subject’s R2-value for each model, and the grand mean (GM) for

the entire sample of subjects. This deviation was subtracted from

the subject’s R2-value in each condition (j): R2ij – (Mi – GM).

Afterwards we performed a one-way ANOVA on the normalized

R2-values and adjusted the degrees of freedom in a way that

accounts for the within-subject design. Note that this procedure is

formally equivalent to a one-way repeated measures ANOVA. In

case of a significant influence of the factor ‘‘model,’’ additional

pair-wise comparisons between models were performed (one-tailed

tukey-kramer tests, significance threshold: p , 0.05 corrected).

(2) The second type of hypothesis-driven whole-brain analyses

were predicated upon explicit suppositions as to BOLD signal

modulation. Each respective analysis encompassed a distinct

within-subject GLM for each relevant reward-related model (e.g.

value, stakes, absolute value, etc.). These GLMs employed only

four main predictors, one for each epoch of the task: cue, delay,

response, and outcome. Additional predictor(s), for each of the first

three epochs, modeled the hypothetical reward-related, paramet-

ric modulation(s) due to each trial’s gain-loss context. For the last

trial-epoch (i.e. the outcome epoch), additional predictors also

captured any modulation due to the magnitude and the valence of

feedback. Table 1 summarizes the respective parameters (rank

numbers from low to high) for the different gain-loss contexts. For

the value model, the stakes model, and the absolute value model,

different parameters for good and bad performance were utilized;

these parameters were drawn from averaging over 50%–100%

performance (good) and 0%–50% performance levels (bad),

respectively (compare Figure 1). Thus, in ‘‘objective performance’’

models, subjects were assigned ‘‘good’’ parametric modulation

orders if they net won money, and ‘‘bad’’ otherwise. Similarly, in

‘‘subjective performance’’ models, subjects were assigned ‘‘good’’

parametric modulation orders if they believed they had net won

money, and ‘‘bad’’ otherwise. For objective performance, an

additional GLM, using ranks determined by each subject’s actual

performance, was analyzed. However, since subjective estimates

can most conservatively be grouped as ‘‘above 50%’’ or ‘‘below

50%,’’ all results reported here use this binary grouping for both

objective and subjective performance models, permitting better

comparison between subjects’ actual (objective) and perceived

(subjective) performances. Models for ‘‘gains only’’ and ‘‘losses

only’’ were also conducted to capture valence-selective modula-

tions, addressing the possibility that separate systems respond to

reward and punishment, respectively. Finally, we calculated

models that included subjects’ motivation ratings, subjects’

preference ratings, and pair-wise interactions of the two, to see if

they better accounted for the observed BOLD activity. All ranks

were mean-corrected. Only those models significantly accounting

for BOLD activation patterns across subjects (i.e. on the second-

level) are discussed.

To account for observed BOLD modulations that may be

ascribed to behavior, performance-related regressors were includ-
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ed in all second-level models, capturing (1) success (1 for successful

trial completion, 0 otherwise), (2) reaction time latencies for each

trial, and (3) total time required for motor response on each trial.

To further assess the ability of one model to better account for

the observed patterns of BOLD activation, paired t-test compar-

isons between our six main models (Figure 2) were performed for

all possible combinations. Specifically, different GLMs were

estimated for each subject and for each model of interest as

explained in detail above. From each GLM, the contrast image of

interest (i.e., the image capturing the amount of parametric

modulation of the delay-related fMRI activity as predicted by the

particular model) was extracted for each subject and entered in the

respective paired t-test analyses calculated across subjects (i.e. on

the second level). For example, in order to compare objective

value and subjective value models, the two contrast images

corresponding to the two models were extracted from each subject

(first-level GLMs) and considered pairs in a second-level paired t-

test. All possible combinations of models were assessed; again, only

those models producing significant differences are reported.

Supporting Information

Figure S1 BOLD time-courses of the left dorsal stria-
tum for objective good and bad subjects. The time-course

over the entire trial duration is presented on top; two

corresponding graphs that zoom in on the cue-related response

(0 s denoting onset of gain-loss context cue, black lines) are

depicted below. For the respective time-courses according to the

subjective performance grouping, please refer to Figure S2.

Found at: doi:10.1371/journal.pbio.1000444.s001 (0.08 MB PDF)

Figure S2 Dorsal striatal BOLD signal time-courses for
subjective good and bad subjects. The time-course over the

entire trial duration is presented, with black lines indicating the

onset of gain-loss context cue presentation. Note that unlike in

Figure S1, which was divided on the basis of the objective

performance, subjective grouping led to a larger overall variance

(error bars).

Found at: doi:10.1371/journal.pbio.1000444.s002 (0.05 MB PDF)

Figure S3 Orbitofrontal cortex BOLD signal time-
courses. The upper panel depicts time-courses for the entire

trial duration; below a graph that zooms in on the feedback-

related response is shown. Black lines at time 0 s correspond to the

onset of the feedback information.

Found at: doi:10.1371/journal.pbio.1000444.s003 (0.04 MB PDF)

Table S1 Brain regions exhibiting a significant contri-
bution to the delay period. All areas that were considered in

our ROI analysis are in italics (p , 0.05 corrected at cluster level;

k . 5 voxels; threshold at voxel-level: p , 0.01 FWE-corrected).

Found at: doi:10.1371/journal.pbio.1000444.s004 (0.01 MB PDF)

Table S2 Average R2-values of the linear regression
between explanatory models and individual subject’s
beta estimates for different reward contexts. Significant

differences in R2-values of different models are indicated by ‘‘X.’’

Separate tables are provided for all ROIs that showed a significant

difference in R2-values across models, namely the left and right

posterior IPS (pIPS l & pIPS r) and the SMA. The table for SPL is

provided in the main manuscript (Figure 5D).

Found at: doi:10.1371/journal.pbio.1000444.s005 (0.03 MB PDF)

Table S3 Parametric modulation of the delay-related
BOLD-signal. Only regions that exhibit a significant (p , 0.05

corrected at cluster level; k . 5 voxels; threshold at voxel-level:

p , 0.05 FDR-corrected) correlation with our parametric modula-

tors are listed.

Found at: doi:10.1371/journal.pbio.1000444.s006 (0.01 MB PDF)

Table S4 Regions that exhibited a significant difference
between models. Second-level analyses were based on individ-

ual subject GLMs including a single explanatory model (p , 0.05

corrected at cluster level p , 0.05; k . 5 voxels; threshold at voxel-

level: p , 0.05 FDR-corrected; inclusive mask for delay period

activity at p , 0.01 FWE-corrected; k . 5 voxels).

Found at: doi:10.1371/journal.pbio.1000444.s007 (0.02 MB PDF)

Table S5 Parametric modulation of the cue-related
BOLD-signal. Only regions that exhibit a significant (p , 0.05

corrected at cluster level; k . 5 voxels; threshold at voxel-level:

p , 0.05 FDR-corrected) correlation with our parametric modula-

tors are listed.

Found at: doi:10.1371/journal.pbio.1000444.s008 (0.01 MB

PDF)

Table S6 Parametric modulation of the outcome-relat-
ed BOLD-signal. Only regions that exhibit a significant (p ,

0.05 corrected at cluster level; k . 5 voxels; threshold at voxel-

level: p , 0.001 uncorrected) correlation with our parametric

modulators are listed.

Found at: doi:10.1371/journal.pbio.1000444.s009 (0.01 MB PDF)

Text S1 Supplemental results and discussion. We

provide additional results about fMRI responses elicited by the

contextual gain-loss cues and also describe fMRI responses to the

reward outcome. Finally, we discuss the involvement of canonical

reward structures in the encoding of the reward context.

Found at: doi:10.1371/journal.pbio.1000444.s010 (0.06 MB

DOC)
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